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A NOTE CONCERNING A GYROELECTRIC MEDIUM 

Abstract 

The fact that a homogeneous electron gas when immersed in a 

uniform magnetostatic field becomes electrically anisotropic, i*e„, 

gyroelectrlc, is placed in evidence, The permeability of the gas 

remains equal to .that of free space, but its dielectric constant is 

transformed to a dyadic or tensor upon application of the magneto- 

static field. The properties of th« dielectric tensor are such that 

a plane electromagnet^ c wave propagating through such a medium under- 

goes a Faraday rotation* This rotation is the dual of the F?*raday 

rotation produced by gyromagnetic media. 

The dielectric tensor of the electron gas is deduced and the 

Faraday rotation constant is calculated. 

Introduction 

It is well known that an idealized electron gas has a permea- 

bility Li  and a dielectric constant £ • & (l-a>*/« ) where a 
*   o 0     0 o 

and  £  are the permeability and dielectric constant of free space, 

to  is the plasma frequency, and o> is the frequency of the wave 

propagating through the gas. 

However, when a uniform magnetostatic field is applied, the gas 

becomes electrically anisotropic. This anisotropy is due to the fact 

that when an electromagnetic waVe propagates through such a medium the 

convection current of electrons has not the same direction as the 



2. 

electric vector of the ;*ave.    Consequently in 3uch a rrsdium    B » (i    H    snd 
o 

D - (£) • E where (£) is tha dielectric tensor. 

The calculation of the components of the dielectric tensor con- 

sists of first calculating the velocity of the electrons in terms of the 

electric vector E of the wave propagating through the medium, and then, 

from a knowledge of this velocity, deducing the convection current of the 

electrons. By adding to this convection current the free space displace- 

ment current of the wave, the total current density is obtained. The total 

current density is thought of as a displacement current in an anisotropic 

dielectric, and thus the components of {£) are calculated. 

And from the components of (£) expressed in terms of to, O> , and 

GO  where GO  is the gyrofrequency, in a straightforward manner the 
B g 

properties of a plane electromagnetic wave traveling through such a medium 

in an arbitrary direction with respect to the magnetostatic field are de- 

termined.x ' 

The direction of propagation of importance to microwave applica- 

tions is the one in which the wave travels parallel to the applied 

magnetostatic field because it is in this direction that the gas produces 

a Faraday rotation of the traveling wava. The Faraday rotation factor is 

easily determined from the fact that the two waves which travel in this 

parallel direction are circularly polarized in opposite senses and have 

unequal velocities. And hence a superposition of the two yields a "linearly" 

polarized wave which rotates about the direction of the applied magneto- 

static field. 

And, of course, for propagation perpendicular to the direction 

of the applied roagnotostatic field the Cotton-Mouton effect^ is exhibited. 



Since an electron gas with appiiod magnetic field produces 

Faraday rotation, it can be used as a nonrsciprocal microwave circuit com- 

ponent.    This aspect of the problem will be discussed elsewhere in 

detail. 

Dielectric Tensor of an Electron Gas with Applied Magnetostatic Field. 

We deduce the dielectric tensor of a medium consisting of a homo- 

geneous electron gas immersed in a magnetostatic field B . When a plane 

electromagnetic wave whose electric and magnetic vectors are respectively 

E and H travels through the medium, each electron is subjected to a 

force F which depends on the electronic charge q and the electronic 

velocity v according to the well-known relation of Lorentzj 

F=qE+q^vxH+qvxB (l) 

wherein    u.      is ths permeability of free space.    Applying Newton's law to o 

each electron of mass    m    and neglecting the second term on the right side 

of (1) we obtain 

m    Til   "    *> ^ + 1 Ix20 
(2) 

In this equation v and E are real vector functions of space and time, 

and B  is spatially uniform and independent of" time. 

Our first task is to solve (2) for the velocity v . To do this 

we differentiate (2) with respect to time, 

2 

m J   z    . q |_E • q^IXB (3) 
dt 

and then postmultiply vectorially by B  , 



u. 

 ~ y x B   - q ~rr E x B„ +q("d+" v x B.-)x 5  •     ''**) 

Multiplying (U) by q/m  and using a well-known vector identity to trans- 

form the right side, we get 

2 A    viB    .2!1EXB    > 9L(JL V  .  B   ) B     - 2_ (R   . B  ) 4r    v .    (5) m dt* °       2 dt -     —o       2   dt -     —o   -o        2    -°   **"° J 
" m •" jn 

Multiplying  (2) scalarly by    B        we  get 
o 

from which it follows after multiplication by B q/m-* that 

2 3 
3-   (   *     v.B     )   B       - *r   (E.B    )    B        . 
m2     dt o     -o m3 o     -o 

And operating on (2) with - we get 
dt 

(6) 

(7) 

—- v "    ~ —- E + - —- v x B   . (8) 
dt3      m dt*    m dt^     ~° 

We note that the second term on the right side of (8) is identical to the 

term on the left side of ($). And the second term on the right, side of 

(5) is identical to the left side of (?). With these observations it is 

clear that (5), (7), and (8) yield 

_£ v • (2 B )2 i.v - a <*L E #si <LEXB„ + a! (E.BA)B   . (9) 
dt3    -      V-c^     dt- »    dt2   -     m2    dt n3 l-   -o'-o 

Since no term in (9) contains a product of time-dependent functions, we are 

free to restrict th« Hm rtp>p«>ndenc;e to    e by replacing    8/3t    by    -i<a , 

etc.    ThU3  (9) becomes 
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v ]i.3_ia5(a BJU-J a £ - iAExRo+ 3_ (B.B0)3      . (10) 

The term (2. |  )-    is a scalar and equal to the square of the gyrofrequency 

«>„> i»es, 

co 
; • m -0 m     «* (11) 

Without loss of generality we introduce a rectangular coordinate 

system so oriented that B  lies along the z-axis. If we denote the unit 
"~o 

vectors along the coordinates axis by a , a^r , and a , we can write 
—X    jr — Z 

B=aB,E.B=EB     .  andExB„-aEB»aEB    .And if 
—o     —z    o'   -     —o        z    o ' -°       -x   y    o     —y   x    o 

we define the plasma frequency   &0   by 

o 

Nq~ 

m£ 
(12) 

where N is the number of electrons per unit volume, and  £. is the 

dielectric constant of vacuum, we can write (10) in the following forms 

No v -ico 1- 
"o o 
2   '2 or - co * 

e 

F + 
1 c   2 c ,2x2 

io%j^s  (a E - a E ) + V°"K   a E , 
M-2 —*>  * y  "y X   ^(,,2.  2) *z zj 

(13) 

Nq v is the convection current and to it we must add the displacement cur- 

rent -ico £ E in order to obtain the total current J, i.e„, 
o - "*" 

-ico £ E + Nq v , (110 

The x, y, and z ' components of J are easily obtained from (13) and (lU)« 

They are 

>•:• 



r o  g_  "* 

.1. fi £ ~\ ^ g- EX • £,<!- -2^-T) •,' 
U  o M(u

5-ca *) co - w     J 
(15) 

-4. [ ec (1 - J-)   Ez] 

It is suggestive to "write (15) in the following manner; 

J  - -ioi £  E - io> &  E 
°x xx x      xy y 

.ico £  E -iw£  E 
yx x     yy y 

(16) 

t  • 
where 

j  • -iu 6  2 
z        zz z 

XX 

xy 

fo(1" 

-i£ 

,.2 
-o     _ x 

"co2 2' 
- GO 

g 
yy 

• 2   2 \ 0 o>(o) -co ) 
& 

2 

yx 

£- - t (i - %-) zz 
0) 

We can express (16) as a tensor equations 

(17) 

J - -ico(£) • E 
(18) 

wnere ( £) is the dielectric tensor whose matrix is 

w 
-r 



(£) 

"XX 

-yx 

\° 

£xy 

cyy 

o 

\ 

ZZ I 

(19) 

It is Important to note that  £  - 6.   and  £  • - 6„_ and that 
xx   yy       xy     yx 

the diagonal components are purely real whereas the off-diagonal eomponen.t.8 

are purely imaginary. To place this in evidence we let 

E   - i£  * 
xy     *y 

and   £  - -i £  » 
yx      yx 

(20) 

where  £,—.* and ^w' are purely real. Consequently (19) becomes xy        yx 

"xx    xy \ 

i& '  £ 
I   yx  yy 

\ 
\ o ZZ 

(21) 

where 

£ • xy - £ 

,.2 

(a>2 - co 2 ) Co 
£ » . 
yx 

(22) 

When the applied magnetostatic field vanishes (B —»0) we see that 

£  •—>0 , t    * •—»Q » and the diagonal terms become equal to 
xy    *        yx   ' 

t  (1 - w /or).    The electron gas is isotropic when BQ - 0 • 

Wave Propagation In Tensor Dielectric Medium 

Now we investigate the propagation of a plane electromagnetic wave 

through a medium whose permeability is n0 and whose dielectric constant 

Bi3mi.rcrnn$s5BSim 
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is (&) . As shown in Figure i, n denotes a unit vector in the direction 

of wave propagation. We let k 

denote the vector propagation constantt 

and hence k « n — where v is the 
—  — v 

phase velocity. Also wa let r be a 

position vector, i.e.,, 

r • a   x + a   y * a    z The electric 
-x        -y -      -z 

vector of a plane wave traveling in 

the direction   n   has the form 
Fig, 1.    Arbitrary direction    n 

of wave propagation in slectron 
gas with applied magnetic field 

ik • r      -icot 
E     e "*   ~   e (23) 

where    E     is a constant.    To determine the equation that   E   mupit satisfy, 

we note that the two curl equations of Maxwell are 

and 

Vx H    -    -!«(&)•£ 

Vx E -    icon      H 

(2U) 

(25) 

where (£) is the dielectric tensor and the product (£) 

displacement vector, i.e., D 

E Is the 

(£) • E or 

\  I 

f £ xx    xy 

cyx   cyy 

zs 

f 

/ 

(26) 



fe- 

lt follows from (21*) and  (25) that 

Vx Vx S    -    w2 v   (£)  *  B C27) 
"• o *~ 

Since 

ik • r „.      _      ik • £. „       ik " L 
•o 

V x V x En e ~    " - -k (k • E    e *"   ") • k • k E      e ~   ~ 

we obtain upon substituting (23) into (2?) 

ik • r ik • r 2 ik » r 
k«kEne-   --k(k-E    p~   ~) - »   u    (£) • E      e"   -    . (28^ ""    " ~° '    -    —    —o o —0 

Canceling out the exponential factor, recalling that k - n w/v, 

» l// \i    £ j and n • n « 1, we obtain c2 

E        nrn     F   )  _zf   (£>• So 

Without loss of generality we rotate the coordinate 3ystem about the z-axis 

so that    9 • rr/2    and    n    lies in the    yz    plane.    Therefore, in (29) 

n - a      sin 0 + a      cos 0 ,    n • E     • E      sin 0 * E     cos 0,    and the 

x,y,z    components of the vector equation  (29) are 

,,      v-   ~xx.      „ , r   cxyt 

ox ee   "-o B* c£   "o 

,.;   £OT „2    £, 
E ox (- h ~tE) + Eov 'cos21 - h ~t0L) + E

oz - (_cos 0 3in 0)"° 

2 g 
0 + E  •  (=cos 0 sin 0) + Eo„ . (sin2 0 - -5 -g—) - 0 . 

Since these three simultaneous equations are homogeneous, for them to yield 

a non-trivial solution it is necessary that the determinant A of the co- 

I efficients vanish1 
1 

I 
1 
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(1. £ is) 

2    £ 

c*    co 

<2   £. J 

(cos    0 - ^ "e^}      (-sin 0 cos 0) 
C o 

(-sin 0 cos 0) (sin2 ? - ""o ~e—) 

o. 
(3D 

In expanding this daterminant we find it convenient to introduce   £_,      is  . 

and   £      defined 

£, 

£2 

"XX 

vo co 

« + i is 
i F       * 

o -ft 

(•x?\ 

zz 

With a little algebraic manipulation (31) leads  to 

r£       1  wv2        1  , 
+    2    rf c2       fcl      c2        £2 tan      Jj • -  

/2L.      1 wv       1 rl   . 1  "h 
of-       c3    c*      *u**l     "2 

(33) 

This equatxiu is of the second degree in    —^    and always has two real roots. 
?/ 

When    0=0    propagation is along the z-axis and it follows from 

(17),  (32), and (33) that 

V- _ 1 
—••    »   •••»•—•• 

c2  ^7 'XX 1 - 
0>r 

(3U) 

E 



/ 

t 
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and 
2 _ 1 

____. • i _!__- 
£              £ 

O                       0 

1 
2"T^- 

1 »o2 

—'(«• CO   / 
O 

(35) 

Therefore, the two propagation constants for waves traveling parallel to 

B  are given by the following two expressions. 

k> ______  /     wo 
oo VIA £• \/l  

'7° ° V «(_-_„) 
(36) 

and 

« 
•     O  O ^      W(_ -I t-aj ) 

g 
(37) 

Moreover, when the propagation is along the y-a-tis, i.es, perpendicular to 

B , 0  is equal to it/2    and in this case we have 

2        £ e cc "3 zz 1 " "oV 
(38) 

; 

and 

-2       ,      , , 1 

c2 "    2 <TJ       £2> "        _    %2/(02 

2*2 P • 
1 - co fc /|_'- - (I) c ) 

The corresponding two propagation factors are 

(39) 

'• fc^S and 

k'        *    cc i/n   £      u 1 - « z/o-2 
w/2 '   °    ° ° 

'ff/2 f    o    o 

u>0
2/-2 

_g2 /(_2 - cog2 ) 

(UO) 

(Ul) 
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Up to now we have deduced a formula (33) which allows us to 

compute the phase velocity of a wave propagating in an arbitrary direc- 

tion with respect to the applied magnetostatic field. We shall con- 

tinue by finding the components of E and H and thus determine the 

polarisation properties of the medium. 

Parallel Propagation 

We have seen that when the direction of propagation is parallel 

to the applied magnetostatic field two independent waves are possible $ 

one has a propagation constant k '  and the other has a propagation 

constant k ", as given by (36) and (37). The two waves have no longi- 

tudinal electric field, i.e., E  » 0, as can be seen frcrr. the third 
'    '  oz   ' 

of equations (30) upon setting 0=0. Nor do they have a longitudinal 

component of the magnetic field, i.e., Hz - 0 , as can be verified by 

using (25) and recalling the fact that E^ and E  are independent of 

x and y ,  herefore, the two waves are purely TEM . 

ftie of the waves is loft-circularly polarized and the othez* is 

right~circularly polarized. Because they have different velocities, a 

superposition of the two yields a "linearly" polarized wave whose polari- 

zation direction rotates about the z-axis. This rotation is like the 

Faraday rotation of optically active substances. 

Equations (30) for 0-0   reduce to 
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2 s „2   S„,r v   ix K      _  , v   xy-i 
E„„ <1 - 3 TT > " Eov ( 3 TT; 
-ox v*    e* 

c
n '     °y 

o £ 2 * v*1  ^ V3E = V 

0 1 aox ;-c2I 
; * "oy U = „2 "C 

soz ^^Tr5 • ° c  o 

where the two values of v ,'c     are given by (3I4) and (35). The third of 

these equations shows us that E^ *  0 . When v2/e2 la given by (3U), 

the first equation of (ii2; yields 

i 
! 

V      AJ       • -   X   "-«        1/ 
E       -o Tr^     £       £ 

- i <U3) 

2    £ 

1      v2   dxx 
c2   f'o 

1 6 

Eox 

CXX                4             A]T 

c                  ° 
V r   1       ,.   "1 c __ 

oy 
1 - £xx    i ^! 

i^o        '    £oj 
•        XX 

!  T~' 
1       0 

If we had used the second equation of (1:2) we would have obtained the same 

result. The corresponding propagation factor k •  is given by (36). When 

v2/c2 is given by (35), we get in a similar way 

-2* „ _i (UU) 
E oy 

Here the propagation factor is kj'  as given hy (37). 

Therefore, the electric components of the two TEM waves propagating parallel 

(US) 
to B  are ik ' z  -iut 

E '  - -i A e 
ik0' z ^-ikst 

ana 



1 
£••• 
I 

m 

1U. 

_   ik " a       -teat 
E "    •    C e    ° e 

X (1*6) 
ikw' z     -tcot 

JS "     - l u    e    w       e 
7 

where A aad C are amplitude constants. The corresponding magnetic 

field components are easily obtained by applying (25) to (US) and (U6) 

thus 
ik0' z     -icot 

and 

&    r.       -    -A k '    e e 
O    X O 

icojiH'     »   i k '  A   e    w e o   y o 

,, ikn» z     -icot 
a"    H        -    Ck"    e    •        e 

^0    x o 

ikQ» z      -icot 
6 

(U7) 

(U8) 

i w ii    H "     -    i C k "     e c   y o 

These two waves  (primed and double-primed) whan cast into vector form are 

.       ikn* z      -icot ..   . 
E«    -a    E ' +  a   E'-(a    - i a   ) A e    °       e (U°) 

-z  "       T   y -x        -y 

»' « ix-V * Sy V " (* £* * V^ A eik°' Z e'iat    <5°> 

and 

E" - a E •» •*• a E » - (a  + i a ) C e °   e" "' (51) 
-x x  -y y   

v-x    -y 

H'! = a„ H " * a H " - (-i a • a / —— y s -  a     (5w 
-x *   T y      -x  TT  to ^Q 

It is clear thst these are two plane circularly polarised TEM waves,    Their 

sum is 
(      ik«z      -icot ik0"a      -i«i\ 

E » E1 + 1» » a      A e e +Ce e V* 
•      "      "      -*l j     , (53) 

r 
I 

ik0' 7      -itot _    ik,," a      -icot L 
a    j-i A e    °       e • i C e    °       e f » 
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-loot fco"     „    ik" z    -iootl 
(+ H.„, +H«   -   a   (i    ^    Aeik°,Z    e^    -i -^ °    "° * e^l 

- " " "^   I        C01A0 «   ^O J 

N (5U) 

—v f A e    o      e *  ——    C e e >     . 
^r'^o w ^o J 

| We see that E • H - 0 and hence E and H are perpendicular, as are 

E', H» and E", KM . To study the polarization of the composite wave we 

consider the ratio E/E . From (53) ws know that 

(55) 

i  .   . i   (\y    II _ \r        I n 

E      iko z    ik» z ,   , x •""•"•o  Ko ' s 
jc m   A e ° * C e °     _ 4 1 • (C/A) e 
E„ "      ik «z     ik "z " '    ,„,  . i(k " -k • ) • 
y   -i A e °  + iCe ° 1 - (C/A) e ' o   o ' * 

If we choose the amplitudes A and C to be equal, we get 

E k • •=  k » 
~ - cot ( -S   °- z) . (56 ) 

Therefore, the rotation of the resultant vector E about the z-exia per 

\mit length of travel is equal to (kQ' -k0")/2 . Thin rotation is called 

Faraday rotation and we denote it by I, i.e., 

(57) 

The rotation is either clockwise or counterclockwise depending on whether 

kSk« or k '• k « . Substituting (36) and (37) into (5?) we get the o " o      0^0 

Faraday rotation as a function of frequency: 

r **o - o 1 V   «(« - o>g)    y   «a(» • coo) j 
(58) 



.[ 
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Perpendicular Propagation 

When the direction of propagation is along any direction in z - 0 

plane, two independent waves are possible. One has a propagation constant 

k' ,   and the other, k" ,  , However, in contradistinction to the 
w/2 rr/2 

case of parallel propagation, only one of the waves i3 TEM while the other 

is TM . 

The TEM wave has an electric field component parallel to B   and 

a magnetic field component perpendicular to B  and n . The propagation — 0 — 

factor k1   of this wave is independent of B„ and hence is the sane as 
n/2 ° 

that of a wave traveling through en electron gas without any applied mag- 

netostatic field. 

The TM wave has a magnetic component parallel to B . Its 
~"0 

propagation factor k"    does depend on B , 

The TEM wavs is linearly polarised parallel to BQ . However, a 

superposition of the TEM wave and the TM yields a composite wave which is 

elliptically polarized. By this case wherein the rotation is due to a 

perpendicular magnetic field the reader will be reminded of the Cotton- 

Mouton effect of optically active substances. 
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